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WHAT IS MEDE+?

MATERIALS IN EXTREME DYNAMIC ENVIRONMENTS PLUS (MEDE+) IS A 

CONGRESSIONALLY DIRECTED SET OF PROJECTS FOCUSED ON DEVELOPING 

ADVANCED MATERIALS AND SCIENCE FOR MILITARY APPLICATIONS. MEDE+ 

CURRENTLY INCLUDES TWO COOPERATIVE AGREEMENTS: ARTIFICIAL 

INTELLIGENCE FOR MATERIALS DESIGN (AIMD) AND AI-DRIVEN INTEGRATED  

AND AUTOMATED MATERIALS DESIGN FOR EXTREME ENVIRONMENTS (AMDEE). 

RESEARCHERS AT THE CENTER ON ARTIFICIAL INTELLIGENCE FOR MATERIALS 

IN EXTREME ENVIRONMENTS (CAIMEE) AT JOHNS HOPKINS UNIVERSITY WORK 

IN CLOSE COLLABORATION WITH DEVCOM ARMY RESEARCH LABORATORY 

TO FURTHER RESEARCH WITHIN MEDE+ AND ACCELERATE THE MATERIALS 

DISCOVERY PROCESS.
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FROM THE CAIMEE DIRECTOR
At the Center on Artificial Intelligence for Materials in Extreme Environments (CAIMEE), we 
continue to innovate and discover, accelerating traditional timelines for materials discovery and 
bringing new ideas and approaches to materials science in extreme environments. The AIMD 
project is nearing completion while the AMDEE project is currently in its first year, and we have 
already made great strides towards our goal of accelerated materials discovery.

With 11 principal investigators in AMDEE, the overall team includes more than 45 people, 
including postdoctoral researchers, research and administrative staff, and graduate and 
undergraduate students. This booklet highlights the diverse activities of this multidisciplinary 
team, which includes expertise in materials science, robotics, experimental mechanics, 
computational modeling, and AI-driven design. The goals, challenges, and successes of each task 
in this project are provided, along with an outline of how these tasks fit into the greater AMDEE 
mission and strategy.

The Artificial Intelligence for Materials Design Laboratory (AIMD Lab) that serves as the focal point 
for much of the activity in AMDEE continues to grow and develop. The AIMD Lab (featured on page 
12) currently has six stations in place, with the ability to expand its capabilities as future research 
needs arise. This high-throughput facility has the potential to revolutionize the way we discover new 
materials and to tailor the characteristics of materials for applications of interest to ARL.

We would like to thank our partners, without whom this project would not be possible. The 
support of our partners at the U.S. Army Research Laboratory and the Department of Defense has 
been crucial to our research activities. We have also been privileged to engage with outstanding 
students from our partners at the Maryland Institute College of Art (MICA) and Morgan State 
University (MSU). These students bring valuable new perspectives on the research we do.

An exciting future lies ahead for autonomous design of materials, and I am proud to say that the 
MEDE+ team is at the forefront of these developments for defense materials applications. 

Onward and upward, 
Lori Graham-Brady

LORI GRAHAM-BRADY

Director, CAIMEE

Professor, Department of  
Civil and Systems Engineering

Johns Hopkins University
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LEADERSHIP

JAAFAR EL-AWADY

Associate Director, CAIMEE

Interim Director, Hopkins Extreme  
Materials Institute

Professor, Department of  
Mechanical Engineering

Johns Hopkins University

BESS BIELUCZYK

Program Manager, CAIMEE
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ABOUT MEDE+
The U.S. Army established the Materials in Extreme Dynamic Environments (MEDE) program in 
2012 to design, develop, and test improved soldier protection materials. Johns Hopkins University 
led the MEDE Collaborative Research Alliance, which included 25 university and research centers 
across 13 states, the United Kingdom, Germany, and Switzerland. Researchers worked in close 
collaboration with DEVCOM Army Research Laboratory, and the MEDE program accelerated the 
development of armor materials by an estimated 10 years. 

Based on the success of the MEDE program, congressionally directed funding was appropriated to 
establish MEDE+. MEDE+ invests in the future of advanced materials and is composed of two major 
projects: AI for Materials Design (AIMD) and AI-Driven Integrated and Automated Materials Design 
for Extreme Environments (AMDEE). 

The AIMD project has resulted in a new, state-of-the art laboratory which integrates multiple 
stations focused on high-throughput and machine learning (ML)-driven materials development. A 
centrally controlled robotic automation system links high-throughput characterization and dynamic 
testing, all driven by ML and computational modeling, and AI-guided decision-making. The AIMD 
Lab provides a proof of concept for high-throughput fabrication, characterization, and testing 
of materials in extreme environments. While the framework of this capability can be applied to a 
variety of materials design questions, the facility currently addresses the critical research question 
of which alloys exhibit optimal dynamic properties. As a result, AIMD will have a significant impact 
on U.S. Army material applications and on the broader materials research community.

AMDEE is a multi-year project that focuses on AI- and data-driven materials design. AMDEE 
is expanding the current hardware capabilities of the AIMD Lab to generate high quantities of 
valuable application-relevant data (e.g., by incorporating integrated thermal/mechanical laser 
shock, novel ultraviolet microscopy, and a broader range of materials such as RMPEAs and light 
alloys). The basic robotic automation developed in AIMD will be extended to reach more stations 
and demonstrate a new level of sophistication in applying materials and processing data. Most 
importantly, this project focuses on developing and implementing machine learning and AI tools, 
not only to evaluate materials, but to make actionable design decisions in the context of an 
automated system, as a large step towards an autonomous materials design capability.
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CONNECTION TO ARMY GOALS
The MEDE+ projects provide foundational research for DEVCOM Army Research Laboratory’s (ARL) 
Sciences of Extreme Materials (SEM) core competency. SEM focuses on the materials and related 
manufacturing methods for mechanical response and performance extremes, including novel 
manufacturing science for energetic materials and active, adaptive, and flexible/soft materials.

Within the SEM core competency, MEDE+ projects directly support the following focus areas:

• High strain rate materials response

• Mechanics of materials

• Materials and data science

• Structural and ballistic materials synthesis, processing, and characterization

MEDE+ researchers work in close collaboration with researchers at ARL, striving to discover 
materials that can survive and perform in extreme environments often encountered during military 
operations. These harsh military environments include those of high acceleration (e.g. projectile 
launch and flight), high temperature and rapid ablation (e.g. hypersonic flight), and high-velocity 
impacts (terminal ballistics).

The knowledge gained through MEDE+ projects will lead to improved protection materials for the 
Army, supporting two of its modernization priorities: Next Generation Combat Vehicle and Soldier 
Lethality.

MEDE+ also supports the Department of Defense’s (DoD) Advanced Materials critical technology 
area, with a focus on autonomous materials development. This critical technology area explores 
novel materials and manufacturing techniques that can dramatically improve many of the DoD’s 
capabilities. Materials developed as part of this effort may have higher strength, lighter weight, 
higher efficiency, or greater resistance to extreme temperatures. As a result, these materials 
will have the potential to better protect military service members and enhance their ability to 
accomplish their missions.
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ORGANIZATION
PRINCIPAL INVESTIGATORS

JAAFAR EL-AWADY PAULETTE CLANCY

DAVID ELBERT

LORI GRAHAM-BRADY

MARK FOSTER TODD HUFNAGEL



MEDE+ HIGHLIGHTS | 9

STAFF
Bess Bieluczyk, Program Manager

Joseph Nkansah-Mahaney, Associate  
Staff Engineer

Sarah Preis, Communications Specialist

Phyllis Sevik, Senior Grants & Contracts Analyst

Matt Shaeffer, Senior Staff Engineer

TIM WEIHS

AXEL KRIEGER JOCHEN MUELLER KT RAMESH

TAMER ZAKI
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 SPOTLIGHT: RAYNA MEHTA
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Rayna Mehta is a graduate student in the Department of Materials Science and Engineering at  
Johns Hopkins University. She has worked on AIMD and AMDEE and is advised by Prof. Tim Weihs.

“One of the coolest moments of 

my career so far was presenting 

at Hopkins on the Hill earlier this 

year. Thanks to the AIMD/AMDEE 

program, I had the opportunity 

to visit the Russel Senate Office 

Building in D.C. and speak with 

congressional staffers, JHU 

alumni, and the general public 

about the research I was doing, 

my experiences in grad school, 

and why I like science.”

1. What are your current activities within AMDEE?
I am working on the fabrication and processing task—this means making different samples and 
thermomechanically processing them before they are characterized through x-ray diffraction and 
spall testing. We fabricate our samples through sputter deposition, which involves building our 
material atomic layer by atomic layer. Creating materials this way gives us more control over the 
microstructure, which is integral to obtaining our desired properties. We then anneal and roll them, 
creating textures that mimic a material made through bulk processing. I also coordinate with the 
characterization tasks, making sure that the materials we are making meet the specs of what they 
need to properly analyze them (sample thickness, surface finish, etc.).

2. What do you hope to accomplish?
I hope to help create a series of samples that improve our understanding of RHEAs and their 
properties—most initial studies focus on equiatomic alloy compositions, and I think our method 
enables more discovery of the in-between composition space. Sample synthesis so far has been a 
frustrating and rewarding process—it requires lots of adjusting of parameters which is a slow-going 
process, but when it works its extremely satisfying.

3. What are your professional interests?
I’m very indecisive about this, but I’m on the fence between industry and national labs. I love being 
hands-on with my research and want to keep that up in my career after my PhD… but other than 
that I’m not sure yet. 
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FACILITIES SPOTLIGHT: AIMD LAB
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The Artificial Intelligence for Materials Design Laboratory (AIMD Lab) represents a collaborative effort 
among leaders in materials science, robotic automation, artificial intelligence, and data science. The facility  
features a closed-loop system that connects various stations for testing, processing, and characterization.

A Conveyance system: A U-shaped conveyance system carries 
material specimens from station to station. The inner and 
outer tracks move in opposite directions, allowing samples to 
move clockwise or counterclockwise throughout the system 
as needed.

B UR10e robots: Each robot has a reach of 51.2 inches and 
is capable of carrying a 27.55 lb payload. Equipped with 
vacuum grippers, the robots move material specimens  
from the conveyance system to their proper positions  
for processing, testing, and characterization.
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C Station manning infeed/outfeed: Samples (each mounted within a 
rectangular sample frame) begin and end their journey on these large 
trays, where a robotic arm adds them to or removes them from the 
conveyance system.

D Laser engraver: A nanosecond pulse laser engraves sample frames 
with QR codes, allowing samples to be tracked easily throughout 
the system. This computer-controlled laser has an average output 
of 20W and is powerful enough to engrave metals, ceramics,  
and plastics.
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E MAXIMA: MAXIMA simultaneously 
performs high-transmission x-ray 
diffraction (XRD) and x-ray fluorescence 
spectroscopy (XRF) to characterize 
samples. A UR10e robot transfers 
samples from the conveyance system into 
MAXIMA through a small door in the side. 
A smaller UR3e robot handles samples 
within MAXIMA. Automation and rapid 
data collection helps reduce bottlenecks 
in characterization.

F Laser shock: A high-energy infrared 
laser launches disk-shaped impactors 
(flyers) at target materials. Another laser 
measures the deformation of the target 
materials in real time.

G Wet lab: AIMD’s wet lab features a 
fume hood, polisher, 3D printers, and a 
soldering station.
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RESEARCH ACTIVITIES WITHIN AMDEE
To achieve the goal of discovering novel RMPEAs using artificial intelligence, AMDEE’s research 
activities strive to address five key AI needs. Each of AMDEE’s research tasks aims to address one 
of these needs.

FIVE KEY AI NEEDS ASSOCIATED TASKS

1.  Significant quantity of coordinated 
materials data relevant to extreme 
environments;

• Fabrication and Processing of Material Specimens 
and Novel Alloy Powders

• Dynamic Testing of Material Specimens

• High-throughput Specimen Characterization

2.  Efficient prediction of the future 
ramifications of various decisions;

• Physics-based & Machine Learning-driven Models

3.  Reliable approaches to identify optimal 
decision(s);

• AI-driven Decision Making for Optimal  
Materials Design

• Bayesian Optimization for Connecting Materials 
Processing, Properties, and Performance

4.  Actionable response to the decision(s);
• Robotic Automation and On-the-fly Learning  

for Automation and Control

5.  Event-driven integration of data  
to connect the design, decision,  
and control loops.

• Data Management and the Event-driven  
Data Layer
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KEY AI NEED 1
SIGNIFICANT QUANTITY OF COORDINATED MATERIALS 

DATA RELEVANT TO EXTREME ENVIRONMENTS
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FABRICATION AND PROCESSING OF MATERIAL SPECIMENS 
AND NOVEL ALLOY POWDERS
PROF. TIM WEIHS, CO-PI

RAYNA MEHTA, GRADUATE STUDENT

GOAL: TO FABRICATE, THERMOMECHANICALLY PROCESS, 
AND CHARACTERIZE DIFFERENT ALLOY SYSTEMS USING A 
COMBINATORIAL APPROACH.

Research Strategy:
Refractory multi-principal element alloys, or RMPEAs, are of interest for 
future use in high-temperature applications. We are interested in RMPEAs 
with a specific geometry; single-phase, body-centered cubic (BCC) 
materials have uniform properties throughout and have been shown to 
have high ductility at elevated temperatures. Our team is working to 
identify alloy systems of interest by utilizing CALPHAD modeling, an 
approach designed to predict or calculate thermodynamic and kinetic 
properties. We fabricate free-standing thick foils of varying chemical 
compositions through sputter deposition, a process by which alloys are 
sprayed onto a substrate in thin layers. 

To create these foils, we first investigated how key parameters such 
as sputter rate, argon pressure, bilayer spacing, and others affect 
film stress, helping us find suitable deposition parameters. Through 
thermomechanical processing, we will introduce a bulk-like texture in 
our 50–200 μm thick foils. Our high-temperature furnace is capable of 
reaching 2200°C and has the ability to quench samples, cooling them 
rapidly to achieve specific properties. When used with a rolling mill, this 
furnace allows us to obtain a variety of phases, grain sizes, and

 orientations. With 
machine learning and 
artificial intelligence 
methods, we will 
screen samples for 
desired material 
and mechanical 
properties, identifying 
ideal grain sizes, 
phases, hardness, and 
ductility. 

Once we identify 
promising alloy compositions, we will synthesize 40–100 μm sized 
powders in bulk using an ultrasonic atomizer. These powders will be used 
as feedstock for a directed energy deposition (DED) process, producing 
samples in structures of further interest to the Army. These steps will help 
scale and accelerate the materials development process for applications 
in extreme environments. Aside from RMPEAs, other alloy systems 
of interest include aluminum alloys with eutectic strengthening and 
structural alloys with reversible phase transformations.

Figure 1: Free-standing 30 μm foil with varying 
Ti/Zr composition
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DYNAMIC TESTING OF MATERIAL SPECIMENS
PROF. KT RAMESH, CO-PI

DR. PIYUSH WANCHOO, POSTDOCTORAL FELLOW

DR. AHMAD MIRZAEI, POSTDOCTORAL FELLOW

GOAL: TO DEVELOP THE ABILITY TO PERFORM TENS OF 
THOUSANDS OF DYNAMIC TESTS EACH WEEK USING  
HIGH-THROUGHPUT LASER SHOCK EXPERIMENTS.

Research Strategy:
High-throughput laser shock experiments will provide the critical dataset needed to build 
AI-driven models of material behavior under extreme conditions, and this in turn will help the 
Army discover new materials for critical applications. The goal is to provide a robust capacity 
to rapidly interrogate new materials as they are made, integrating our efforts with high-speed 
characterization and robotics to drive automated scientific discovery. The new materials themselves 
are created by the synthesis, processing, and fabrication group. Our basic approach is to use 
pulsed lasers, together with a high heating rate capability, to obtain dynamic material properties 
as a function of shock stress and temperature in a material of known microstructure. We study 
ductile metals as well as brittle and quasi-brittle materials using thick foil specimens. Using a 
high-power infrared laser that generates five pulses per second, we are able to launch miniature 
disk-shaped impactors into our target materials, and we then use another laser operating at low 
power to measure the real-time deformation of the target material. Such measurements allow us to 
determine the strength and impact resistance of the new material. All data from each experiment 
is collected and analyzed with an automated protocol. Significant safety concerns arise with such 
high-power lasers which must be addressed, but automation significantly reduces the risk to humans.

Figure 2: High-power lasers can present serious 
safety concerns, but automation and the use of  
safeguards like an enclosure and laser safety 
windows help reduce the risk of harm to humans.
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HIGH-THROUGHPUT SPECIMEN CHARACTERIZATION
PROF. TODD HUFNAGEL, CO-PI

PROF. MARK FOSTER, CO-PI

PROF. KT RAMESH, CO-PI

GOAL: TO PROVIDE ACTIONABLE INFORMATION ABOUT MICROSTRUCTURE TO GUIDE 
AUTOMATED MATERIALS EXPLORATION CAMPAIGNS.

Research Strategy:
The emphasis is on obtaining, as rapidly as possible, sufficient information 
to allow decisions to be made about the next step(s) in automated 
materials exploration campaigns. Our research strategy emphasizes the 
development of novel, high-throughput techniques that avoid traditional 
bottlenecks in microstructural characterization, particularly the need for 
meticulous sample preparation. 

One thrust in this task has been the development of an instrument 
and associated data analysis techniques to permit fully automated 
high-throughput transmission high-energy x-ray diffraction (XRD) 
characterization of microstructure (see figures 3 and 4). High-energy 
XRD provides microstructural information including the identities and 
amounts of specific crystalline phases present in the sampled region, 
along with their lattice parameters, grain size, and crystallographic 
texture. The small spot size of the x-ray beam (approximately 0.2 mm) 

permits mapping of microstructural variations over a large area. The 
advantages of high-energy XRD are that there is no need for extensive 
sample preparation, and that the x-rays are sufficiently penetrating that 
the true bulk microstructure is sampled (as opposed to electron-based 
techniques that can only analyze the sample surface). Simultaneously 
with XRD, the instrument can perform x-ray fluorescence spectroscopy 
(XRF) which provides quantitative, point-by-point measurements of the 
chemical composition.

This task is also pursuing the development of novel techniques for 
coherent ultraviolet (UV) microscopy of sample surfaces, which have 
the potential to provide higher spatial resolution than traditional optical 
microscopy techniques, while not requiring the sample to be held in 
vacuum (as in electron microscopy).
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Figures 3 and 4: (3) Instrument for high-throughput XRD and XRF. (4) Sample XRD data from a 200 µm thick specimen of aluminum alloy.

3

4
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KEY AI NEED 2
EFFICIENT PREDICTION OF THE FUTURE 
RAMIFICATIONS OF VARIOUS DECISIONS
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PHYSICS-BASED & MACHINE LEARNING-DRIVEN MODELS
PROF. JAAFAR EL-AWADY, CO-PI

PROF. LORI GRAHAM-BRADY, CO-PI

PROF. TAMER ZAKI, CO-PI

GOAL: TO INTEGRATE MACHINE LEARNING AND PHYSICS-BASED MODELING WITH 
EXPERIMENTAL RESEARCH IN ORDER TO ACHIEVE A HOLISTIC UNDERSTANDING 
OF RMPEAS AND ELUCIDATE THE RELATIONSHIP BETWEEN MICROSTRUCTURE AND 
MECHANICAL PROPERTIES LIKE STRENGTH, DUCTILITY, AND SPALL RESISTANCE.

Research Strategy: Physics-based Models
Models of spall under shock loading in alloys are highly computationally intensive, requiring accurate representation of plastic deformations at the 
sub-grain scale, damage due to void initiation and growth at grain boundaries, and the equation of state. To support rapid materials design, the 
AMDEE program needs accelerated models that can approximate behavior such as spall strength in real time—a much faster rate than the physics-
based models can achieve. After developing the physics-based finite element model (FEM) that represents all these phenomena, this team has used an 
ensemble of FEM results to train a three-dimensional U-net capable of predicting the evolving velocity profile in a microstructure under shock loading. 
This U-net model generates accurate evaluations, in orders of magnitude less time than the corollary FEM models. This figure shows the predicted 
velocity profile at the final step of the model, using both FEM and U-net models. Although the U-net model is trained only on microstructures with 
20 grains, it is capable of capturing accurately the velocity profile in a microstructure with 70 grains. In other words, the U-net model is capable of 
predicting behavior in as-yet unseen microstructures, potentially serving a critical role in designing materials with improved spall strength and other 
key dynamic properties.
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Figure 5: Velocity maps predicted from finite element models (FEM) 
with crystal plasticity and damage, vs those predicted from U-net. U-net 
is trained only on microstructures with 20 grains, but it can accurately 
predict behavior of microstructures with 70 grains, with orders of 
magnitude less computational time as compared to the FEM model.
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Data-driven Representations and Machine Learning
Machine learning framework: We are developing a coupled artificial neural network framework to guide RMPEA design. The first multi-layer 
perceptron (MLP) network predicts phase composition based on 34 chemical descriptors. RMPEAs classified as single-phase body-centered cubic 
(BCC) microstructures will be passed to a second MLP network, which predicts their mechanical performance. By actively exploring the design space, 
this framework will identify BCC RMPEA candidates with optimal predicted properties. The architecture comprises two sequenced MLP networks, 
continuously trained on both simulated and experimental data for enhanced accuracy. This integrated data-driven approach will rapidly steer RMPEA 
design towards alloys with exceptional strength and ductility. Further details on the MLP framework are provided in  
Figures 6 and 7.

Training database: The coupled MLP networks are trained on extensive datasets from both computational and experimental sources. The first network 
uses a database of thousands of RMPEAs with predicted phases from Thermo-Calc software. The second network trains a database of BCC RMPEA 
mechanical properties generated by a new experimentally validated theoretical model developed by our group. As more experimental data becomes 
available from AIMD, it will be incorporated to enhance the fidelity and practical applicability of both datasets. This focus on integrated computational 
and empirical validation will produce MLP networks with exceptional accuracy for guiding RMPEA design.

Key findings: The developed MLP framework demonstrates exceptional performance and new capabilities:

•  Achieves over 90% prediction accuracy for RMPEAs containing Ti, Fe, Al, V, Ni, Nb and Zr, trained solely on computational data. The learning 
curve in Figure 7 illustrates rapid convergence.

• Predicts up to 8 potential phases simultaneously, namely: FCC, BCC, HCP, ordered BCC, Laves, Sigma, Heusler and Other. This enhanced the 
resolution of the predictions which exceeds previous works that only focused on a much smaller subset of phases.

• Incorporate Shapley values and feature distribution analysis to provide correlation between the chemical feature importance with respect to 
the development of different phases to enable the accurate prediction of a completely new alloy compositions outside the original training 
data.

By combining high accuracy, multi-phase prediction, and interpretation for new alloys, this MLP approach significantly advances high-throughput 
RMPEA design and discovery. Ongoing work includes integrating experimental data to further improve practical applicability.
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6

Figures 6 and 7: (6) Architecture of the 
designed MLP network (7) Learning curve  
of the first MLP network

7
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KEY AI NEED 3
RELIABLE APPROACHES TO  

IDENTIFY OPTIMAL DECISION(S)
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AI-DRIVEN DECISION-MAKING FOR OPTIMAL MATERIALS DESIGN
PROF. TAMER ZAKI, CO-PI

GOAL: TO DEVELOP ACCURATE AND PREDICTIVE AI MODELS THAT GUIDE  
DECISION-MAKING FOR THE DESIGN OF NEW MATERIALS.
Material performance on a larger scale depends on a material’s 
composition, microstructural properties, processing details, and many 
other design and process decisions. The objective of this task is to 
regard these decisions as an optimization problem in order to objectively 
select these tunable parameters in a manner that optimally achieves the 
desired outcome. Mathematically, this process is a nonlinear optimization 
where we aim to maximize an objective function (e.g. spall strength of a 
material sample) or minimizing a cost function (e.g. probability of failure). 
Since the outcome invariably depends on a large number of design, or 
control, parameters, the optimization is perform in high dimensions. In 
addition, due to the nonlinear nature of the problem, the search for the 
optimal configuration must traverse a non-convex, tortuous decision 
terrain. The figure below is a simplified schematic of a cost function J(c), 
where c are the control parameters to optimize. While the figure shows a 

two-dimensional optimization c=[c_1,c_2 ]^T for visualization purposes, 
in reality we are interested in higher dimensions. In the current stage 
of the project, we assume that the cost of performing experiments or 
simulations is not prohibitive, and therefore we can sample the space 
of parameters c using efficient approaches.  We then proceed to learn 
the surface J(c) from data, using a machine-learned model that we 
subsequently use as a surrogate to optimize our design decisions. Our 
optimization algorithm effectively navigates non-convex surfaces in 
search for the optimal. For our first demonstration, we will optimize the 
grain orientations for a microstructure with a fixed grain boundary and 
grain size distribution, with the objective of maximizing the spall strength. 
We will then expand the design space to include a larger number of 
design variables such as number of grains, grain size distribution etc. 
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Figure 8: Schematic of decision landscapes, J, which depend 
on parameters c. The landscape is inferred from data, 
and encapsulated in a surrogate machine–learning based 
model. The ML-model is subsequently used as a surrogate 
to experiments to inform and, more importantly, efficiently 
optimize decision-making.
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BAYESIAN OPTIMIZATION FOR CONNECTING MATERIALS 
PROCESSING, PROPERTIES, AND PERFORMANCE
PROF. PAULETTE CLANCY, CO-PI

GOAL:  TO ACCELERATE THE DISCOVERY OF MATERIALS WITH SUPERIOR PROPERTIES
Accomplishment: We used a Bayesian optimization code pipeline that we created (PAL 2.0)1 to perform “feature engineering” to find the properties 
most correlated with the target of the optimization, and then use the optimization code to select better alternative materials. Unlike most deep 
learning approaches, we can work with small data sets (as few as 12 points), perfect for research labs with few and expensive data. We have completed 
a spectacular “stress test” of PAL using a 70,000-strong MOF database2 to find the best MOF material for methane storage. We found the optimal 
solution in just 4 tries, beating the performance of a recent paper by Deshwal et al.; see Figure 9.3 

This year, we started new collaborations with Prof. Tim Weihs (Mat. Sci.) and Eddie Gienger (APL) to predict better performing metal alloys. With the 
Weihs group, we helped identify the presence of a ternary alloy phase as a key metric and suggested improved Mg-alloys. We found an unexpected 
result that both corrosion rate and hardness depend on the ternary phase, Ca2Mg6Zn3 , explaining the slow decrease in these targets as the solution 
treatment time increases beyond 10 minutes; see Figure 10. These encouraging results, produced in just a short time, have prompted a second study, on 
Al-alloy fragmentation, to begin. A publication is in preparation.4 

With Gienger, we have completed two design improvement cycles so far to suggest better high-entropy alloys, with improved strength for spacecraft 
actuators.  A design cycle involves PAL predictions of compositions to try, followed by experimental synthesis and testing, with the results fed back to 
PAL for further optimization.  We have added constraints for manufacturability and the cost of the elements. This work will be presented in November 
at a TMS conference.

1  M. Sharma Priyadarshini, O.V. Romiluyi, Yiran Wang, K. Miskin, P. Clancy. A new approach to incorporate physical domain knowledge for Bayesian 
optimization searches in high-dimensional chemical materials system, Materials Horizons, revision submitted 11/6 (2023)

2 R. Mercado, R.-S. Fu, A. V. Yakutovich, L. Talirz, M. Haranczyk and B. Smit, Chem. of Matls., 2018, 30, 5069–5086. 

3 A. Deshwal, C. M. Simon and J. R. Doppa, Molecular Systems Design & Engineering, 2021, 6, 1066–1086.

4  S. Raguraman, M. Sharma Priyadarshini, T. Nguyen, R. McGovern, A. Kim, A. Griebel, P. Clancy, T. Weihs, Machine Learning-guided rapid structure-
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Figure 10: XGBoost analysis of the importance of posited physical properties and their 
corresponding correlation coefficient (labeled + or - to denote positive or negative correlations)

Figure 9: Progress of a Bayesian optimization approach to find the MOF candidate with the best 
methane storage capability. The fewer the number of evaluated COFs, the faster the optimization. 
Recent results by Deshwan et al. [3] are shown in black. A naive BayesOpt approach in red and PAL 
2.0’s very fast optimization is shown in blue.
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KEY AI NEED 4
ACTIONABLE RESPONSE TO THE DECISION(S)
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ROBOTIC AUTOMATION AND ON-THE-FLY LEARNING  
FOR AUTOMATION AND CONTROL
PROF. AXEL KRIEGER, CO-PI

PROF. KT RAMESH, CO-PI

GOAL: TO CREATE A SYSTEM OF ROBOTS THAT CAN HANDLE  
SAMPLES IN A PRECISE, REPEATABLE FASHION TO FACILITATE  
HIGH-THROUGHPUT MATERIALS DISCOVERY WHILE 
COLLABORATING SAFELY WITH HUMAN RESEARCHERS.

Research Strategy:
We developed a robotic system to accelerate AI-directed material discovery by facilitating high-
throughput testing and characterization. The system features a conveyor setup and six collaborative 
UR10e robots from Universal Robots to handle and manipulate the samples. The robots utilize 
vacuum grippers for precise sample handling, allowing them to move samples effectively between 
the conveyor and different subsystems.

A key aspect of this design is its precise and repeatable sample positioning at different stations. Its 
modular design allows for adaptability in handling different materials and sample sizes.

The communication between the central programmable logic controller (Siemens PLC) and each 
subsystem is established using OPC Unified Architecture (OPC UA). Additionally, the system’s 
performance has been evaluated and simulated through simulations in Gazebo and SIMUMATIK.

Safe collaboration between the robotic system and researchers is paramount. Each collaborative robot is equipped with a force sensor that will 
automatically stop when it collides with a person or an object.

This fall, we installed the robotic automation system in our new facility and started integration with the different substations. 

Figure 11: UR10e robots are installed at  
each station in the AIMD Lab. The robots 
are fitted with vacuum grippers to facilitate 
specimen handling.
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KEY AI NEED 5
EVENT-DRIVEN INTEGRATION OF DATA TO CONNECT 

THE DESIGN, DECISION, AND CONTROL LOOPS
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DATA MANAGEMENT AND THE EVENT-DRIVEN DATA LAYER
DR. DAVID ELBERT, CO-PI

GOAL:  TO CONNECT AMDEE TASKS WITH EVENT-DRIVEN DATA STREAMING TO CREATE 
ORCHESTRATED WORKFLOW AUTOMATION
The AMDEE vision centers on integrating automation and decision-making to move the current state-of-the-art towards autonomous materials design. 
Making this a reality requires seamless integration of data from three components: 1) processing and characterization science, 2) AI/ML decision-
making models, and 3) automated control system deployments for the varied, complex tasks. Our group is implementing a streaming data layer to 
seamlessly link events across these three main components and serve as a backbone for the development of event-driven methods, which will allow 
research tasks to react automatically to changes in state of other parts of the AMDEE system.

To realize this goal, we have developed an initial concept of AMDEE workflows factored into data creation, data analysis and visualization, and data 
curation. Work-to-date has included building object storage and streaming server clusters to support streaming movement and management of 
data. We have advanced our knowledge graph approach to data modeling to include streaming data from automated sample handling in the laser 
shock facility. Current efforts include over 30,000 linked data nodes that can be stored in file representations or a queryable graph database. We are 
currently working to automate decision deployment for the See-Move-Shoot algorithms being developed by the robotic automation group.

In addition to scientific data, AMDEE researchers (directed by Eric Walker) have developed a rich data layer for sample movement and analysis control. 
This summer, our group will focus on building streaming from the Facility Control and Data Layer. This control data provides a seamless source of 
information to link sample characterization parameters with scientific data, as well as a powerful point of contact to return ML decisions in the form 
of control scripts to guide next steps on the automated line. Once we have automated capture and curation of control data, we will create automated 
tools to inject new control directives safely and in coordination with the workflows entered manually on the line. This level of orchestrated interaction is 
believed to be unique in the materials research space and will accelerate advancement towards autonomous research.
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RESEARCHER SPOTLIGHT: JOSEPH NKANSAH-MAHANEY



MEDE+ HIGHLIGHTS | 39

Joseph Nkansah-Mahaney is an associate staff engineer at the Hopkins Extreme Materials Institute  
at Johns Hopkins University. His primary focus is the AIMD Laboratory.

“I love science— 

but I REALLY love  

when science  

makes a difference.”

1. What is your role within AMDEE? 
I am a staff engineer. I work as part of a team to tackle the technical challenges of the development 
of a complex autonomous, AI-driven materials research platform. Within the context of AIMD/
AMDEE, I help coordinate and integrate the PIs, their teams, vendors, and the many disparate tools 
and parts that allows bringing the systems together chasing the vision of AI driven autonomous 
materials discovery. As a staff engineer working on the AIMD platform, I have a responsibility to 
learn and share knowledge in subjects extending from to the practical, such as connecting wires 
to pass DC signals, to the more abstract such as an understanding how AI works within the AIMD 
materials discovery process. 

2. What is it like to work on AMDEE?  
No two days are the same. I work in a place where I know I am on the cutting edge of discoveries 
which could have a positive impact on millions of people. I also get to work with extremely 
talented, focused, and dedicated scientists every day, all of whom are driven, like me, to help the 
AIMD Lab reach its full potential.

3. What are your professional interests?  
I have acquired many while on life’s unpredictable path. On my professional journey, I’ve found a 
consistent interest in bringing the scientific results from curious lab experiments to a scaled reality 
outside of the laboratory such that a measurable, societal impact can be made. In the past, I have 
often joked with colleagues that if they invented warp drive, I would build it. I love science—but I 
REALLY love when science makes a difference.
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OTHER MEDE+ FACILITIES: THE WEIHS LAB
The Weihs Lab, led by Tim Weihs, features a suite of equipment used for fabricating and processing  
samples. Researchers use thermomechanical processing methods to create samples with very specific 
characteristics.

EQUIPMENT CAPABILITIES USE FOR AMDEE

A.  Sputter chamber—PVD  
Uses DC magnetron guns  
to deposit layers of atoms  
on a substrate.

• 30" diameter chamber provides 
the space to create hundreds of 
samples in a single deposition

• Horizontal configuration 
allows for the creation of 
thicker samples, which can be 
removed from substrate for 
characterization

• Gradients allow researchers 
to create many samples with 
large ranges of compositions 
efficiently

Allows researchers to:

• Finely control the 
microstructure of sample 
materials and create 
alloys with very specific 
compositions

• Determine how composition 
affects material properties

B.  High-temperature furnace 
with quenching capability

• Reaches temperatures up  
to 2200°C

• Has built-in quenching 
capability to cool samples 
rapidly

Allows researchers to:

• Homogenize samples

• Access more phases than a 
standard lab furnace

• Anneal (heat treat) samples

C. Rolling mill
• Two rollers compress samples

• Capable of both cold and hot 
rolling (up to 300°C)

Allows researchers to change  
the textures of their samples, 
creating materials with oriented 
grains, increased dislocations,  
and greater strength

“Most standard lab 

furnaces can only reach 

1200°C, which could be 

enough to homogenize 

a material, but not really 

let us access every phase 

predicted. Our high-

temperature furnace 

reaches 2200°C, which 

is particularly helpful 

when we are looking 

for single-phase BCC 

microstructures.”
Rayna Mehta, graduate student
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SIGNIFICANT MEETINGS
HOPKINS ON THE HILL
Hopkins on the Hill is a biennial event which showcases the range, value, and impact of federally funded research and programming at Johns Hopkins 
University. MEDE+ was one of 14 major projects selected to represent Johns Hopkins at this event in 2023. The event, which was held in the historic 
Kennedy Caucus Room of the Russell Senate Office Building, was attended by the Maryland Congressional delegation, JHU alumni, and university 
leadership. 

CONGRESSIONAL STAFFER VISITS
Legislative staffers from the offices of U.S. Senators Ben Cardin and Chris Van Hollen visited MEDE+ facilities at Johns Hopkins University on August 31, 
2023. The visit included tours of the AIMD Laboratory and the labs of Todd Hufnagel and Tim Weihs.
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RELATED ACADEMIC PROGRAMS
The Hopkins Extreme Materials Institute is committed to academic and professional development.  
In support of these values, CAIMEE facilitates several academic programs to broaden the impact  
of the AMDEE program.

EXTREME SCIENCE INTERNSHIP (ESI)
The ESI program, which is run in coordination with Morgan State 
University, is led by Prof. Birol Ozturk and offers paid internships year-
round to MSU students. ESI interns participate in internal internships 
at Morgan State, allowing them to develop their research skills before 
participating in external internships at participating locations. Started 
during the MEDE program, ESI continues to model excellence in 
collaboration and student development.

HEMI/MICA EXTREME ARTS INTERNSHIP
The HEMI/MICA Extreme Arts Program brings artists and scientists 
together to explore unique perspectives on extreme materials and events. 
HEMI/MICA Extreme Arts Internships bring students from the Maryland 
Institute College of Art to Johns Hopkins University, where they work with 
HEMI faculty hosts and MICA mentors to discover new scientific concepts 
and opportunities for creative expression. 

In 2023, AMDEE supported Extreme Arts intern Lianghong Ke. Ke, a 
photographer, worked with HEMI Fellow Paulette Clancy and was inspired 
by artificial intelligence and the pursuit of technological advancements 
like superconductors. Ke’s work, shown on page 44, conjures a warped, 
abstract reflection of what the world might look like as humanity 
continues its ceaseless march towards infinite knowledge and power.

In 2023, AMDEE supported 
ESI intern Tomas Sujeta. 
Sujeta’s work involved 
quantum sensing 
experiments to detect 
magnetic fields with 
nitrogen vacancy  
defects in diamond.
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Lianghong Ke 
Spiral, 2023 

Digital Algorithmic Photograph
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