Experimental Facilities
HEMI researchers have access to some of the most high-tech and specialized equipment available in the industry. Below is a sampling of some of the facilities available to our partners and researchers:
For more information or specifics on any of the facilities or equipment available to HEMI constituents, please contact the HEMI facilities team at HEMI_engineering@jh.edu.
Click here to review pricing structures for available pieces of equipment.
Focused Ion Beam Facility
The Thermo Scientific Helios G4 UC FIBSEM is a cutting edge tool funded by the Whiting School of Engineering, HEMI and the Krieger School of Arts and Sciences and is maintained by the Materials Characterization and Processing Center. This ion and electron beam tool is designed for characterization and fabrication of a wide variety of materials–from biological to metallic. The ion column uses a liquid gallium source to accelerate Ga ions towards samples. This beam can image, then cut the sample, or deposit platinum with extreme precision. The Helios will be used to produce high-resolution secondary and backscattered images, collect 3-dimensional data sets through slice-and-view acquisition, and generate 2D and 3D X-ray (EDX) and crystal orientation maps (EBSD). Three-D volumes are generated on the tens of micrometer scale, which compliments the FS-Laser system. Devices can be fabricated through milling and deposition with nanometer accuracy. The Helios is also designed to produce high-quality TEM grids through a highly automated process or create micro or nanometer test specimens for materials properties experiments.


Hypervelocity Facility for Impact Research Experiments (HyFIRE)
The HEMI Hypervelocity Facility for Impact Research Experiments (HyFIRE) contains a 2 stage light gas gun that is capable of launching impactors at velocities up to 7 km/s. The gas gun has a 7.6 mm bore and uses helium or hydrogen, together with saboted projectiles. Typical impactors are spheres or cylinders a few mm in diameter. The facility is not designed to be a high-throughput impact facility, but rather it is designed to perform a small number of experiments with very rich diagnostics and deep datasets. The emphasis is on the coupling of mechanics, physics and chemistry at very high pressures, strain rates and temperatures. The diagnostic facilities includes two flash X-ray tubes, PDVs, other laser interferometers, a Shimadzu HPV X2 high speed camera, and a PI spectrograph.
Laser Shock Facility
This facility has a University-scale laser shock capability that can achieve high pressures and ultra-high strain rates for relatively short times. The facility is driven by a Quanta-Ray Pro-350 2.5J 1064nm pulse laser with a 10 ns pulse duration, has diagnostic lasers (an NKT Koheras Basik 45 mW 1550.28 nm CW fiber laser and a Keopsys Erbium Doped fiber amplifier) for photon doppler velocimetry (PDV), a Teledyne Lecroy 813ZI-B 13 GHz oscilloscope, a Coherent Energy-Max-USB/RS pyroelectric energy meter, a Newport Spiricon LBP2-VIS2 Laser Beam Profiler, multiple power meters, signal generator and other equipment. The facility can be used to study the equation of state, to evaluate spall and other high-rate damage processes, and to interrogate laser-matter interactions.

Plate Impact Facility
The plate impact facility is comprised of a single-stage gas gun with target chamber, laser interferometers, and high-speed data acquisition. The gas gun uses a Duvall-style breech, and launches projectiles at velocities up to 300 m/s, while the gun barrel is 50 mm in diameter and is keyed to allow for oblique (pressure-shear) impact. Normal plate impact and pressure-shear plate impact experiments at velocities up to 300 m/s and strain rates up to 106 1/s can be achieved.
Kolsky Bar Facility
The Kolsky bar facility is a rich-diagnostic high-strain-rate laboratory that is capable of testing materials in uniaxial or biaxial confined stress states at strain rates of 102 to 104 1/s over a range of temperatures (up to 800 degrees Celsius). Equipment includes a conventional compression Kolsky Bar, a Desktop Compression Bar, a torsional Kolsky bar, and a multiaxial bar for tension and torsion. The facilities are able to investigate metals, ceramics, polymers, composites and biological tissues. The instrumentation includes high-speed 12-bit data acquisition systems (LeCroy HDO4034, 350 MHz bandwidth, and 2.5 GHz maximum sampling frequency), laser interferometers, high-speed pyrometry, high-intensity light sources, and several high-speed oscilloscopes. High-speed imaging allows in-situ visualization during testing. A Coherent Sapphire (150 mW, 532 nm) green laser is used for interferometric applications. Recovery capabilities allow us to use SEM, TEM and HRTEM to understand microscopic deformation and failure mechanisms.
