HEMI Seminar: Projects in Additive Manufacturing and Charged Polymers at the Army Research Laboratory

Projects in Additive Manufacturing and Charged Polymers at ARL

Additive Manufacturing (AM) processes are revolutionizing the on-demand capabilities of current front-line missions for the modern soldier, allowing unprecedented levels of manufacturing versatility and multi-functionality as needed. As the technology continues to mature, new materials and methods for evaluating AM parts will be required. In this seminar, a variety of important topics related to polymer additive manufacturing at the US Army Research Laboratory are discussed, including applications in the areas of: recycling of front-line battlefield polymer waste for on-demand AM, fabrication of novel filaments for AM processes, and construction of nanocomposites using AM. Techniques for evaluating mechanical performance of AM polymers are also discussed, including topics in the areas of interfacial mechanical behavior and fracture properties.

Nikki Zander, Dan Cole, Kevin Hart, and Frank Gardea from the Army Research Lab will be joining us at the Johns Hopkins University Homewood Campus. Seminar will be held at 11 AM in Malone Hall, G 33/35.

HEMI Short Course: Dynamic Behavior of Ceramics and Transparent Materials

Dr. Ghatu Subhash, the Newton C. Ebaugh Professor of Mechanical and Aerospace Engineering at the University of Florida, will host a HEMI short course presenting a range of fundamental topics in dynamic response of brittle materials (ceramics and transparent materials).

The two-day lecture series is designed to familiarize graduate students, engineers, and researchers with interest in dynamic behavior of advanced ceramics to the fundamental concepts and then to the state-of-the-art experimental, theoretical and computational studies under a range of complex dynamic loading scenarios.

Register here by February 20th.

HEMI Seminar: John Borg

Dynamic Behavior of Earth Materials Subjected to Pressure-Shear Loading

Dr. John Borg, Prof. of Mechanical Engineering, Marquette University

The dynamic behavior of earth materials, such as wet and dry sand, is of interest to a variety of research fields such as defense, mining and planetary science. Plane-strain experiments are necessary to obtain the Hugoniot response of such systems however such loading is not indicative of most loading scenarios of interest.  Thus understanding oblique impact configuration (pressure-shear) can lead to a better understanding of the role of strength in the dynamic response of earth materials.  Figure 1 illustrates the basic configuration of the impact experiment and sand of interest.  A key aspect of this experiment is obtaining an accurate measurement of the normal and transverse velocity of the anvil.  For these experiments a photon Doppler velocimetry (PDV) will be used.  The configuration and the inherent difficulties of applying such a diagnostic technique to this experiment will be discussed.

Seminar will be held at 3:30 PM in Malone G33/35.

Borg seminar image

Fig. 1. (a) Oblique impact configuration with assembly with a thin sand sample with incident and reflected probes (b) Oklahoma #1 pure sand (425 – 500 μm diameter)

borg-seminar-11-11-v3

HEMI Director K.T. Ramesh Presents at Defense Materials, Manufacturing & Infrastructure Committee Meeting (DMMI)