HEMI Seminar: Dr. Tian Xie

Please join us for a seminar with Dr. Tian Xie, a senior researcher and project lead at Microsoft Research AI4Science. The seminar is titled “MatterGen: a generative model for inorganic materials design.”

The seminar will begin at 2:30 PM on Friday, Feb. 23 in Gillman Hall 50.

This seminar will also be accessible virtually. Connection information will be distributed the morning of the seminar via email. Those interested in attending who are not on HEMI’s email list can reach out to Sarah Preis at [email protected] for connection information.

Bio: Tian Xie is a senior researcher and project lead at Microsoft Research AI4Science. He leads a team of researchers, engineers, and program manager to develop the next generation machine learning models for materials discovery. Before joining Microsoft, he was a postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT from 2020 to 2022, co-advised by Tommi Jaakkola and Regina Barzilay. He got his PhD in Materials Science and Engineering at MIT in 2020, advised by Jeffrey C. Grossman. Tian is most known for his research in graph representation learning and generative models for materials, including widely used models like CGCNN and CDVAE.

HEMI Seminar: Prof. Moataz Attallah

Please join us for a seminar with Prof. Moataz Attallah of the University of Birmingham. The seminar is titled “Accelerating Materials and Process Development in Additive Manufacturing.”

The seminar will begin at 3:00 PM on Monday, Dec. 4 in Malone Hall 137.

This seminar will also be accessible via Zoom. Connection information will be distributed the morning of the seminar via email. Those interested in attending who are not on HEMI’s email list can reach out to Sarah Preis at [email protected] for connection information.

Bio: Professor Moataz Attallah holds a chair in advanced materials processing at the School of Metallurgy and Materials University of Birmingham, where he leads the Advanced Materials & Processing Lab (AMPLab). His research focuses on metallic materials processing, with an emphasis on laser-based additive manufacturing, AM post-processing strategies, and novel applications of metal AM in the aerospace, nuclear, defence, motor racing, space, and telecommunications sectors. He sits on the advisory board and provides consultancy to companies and universities in Europe, North America, the Middle East and Asia. He co-authored over 200 scientific reports and 3 book chapters, as well as being a co-inventor on 5 granted patents.

HEMI Seminar: Richard A. Regueiro

Please join us for a seminar with Prof. Richard Regueiro, University of Colorado Boulder, titled “Overview of Center for micromorphic multiphysics porous and particulate materials simulations within exascale computing workflows.”

The seminar will begin at 11:00 AM on Friday, Nov. 10 in Malone Hall 137.

Bio: Professor Richard Regueiro received his PhD in Civil and Environmental Engineering at Stanford University in 1998. He then became a member of the technical staff at Sandia National Laboratories, California, from 1998 to 2005, at which time he began his academic career in the Department of Civil, Environmental, and Architectural Engineering at the University of Colorado Boulder. His research focuses on computational multiscale multiphysics materials modeling for simulating inelastic deformation and failure in heterogeneous porous media, including saturated and partially saturated soils and rock, unbonded particulate materials (e.g. sand, gravel, metallic powders), bonded particulate materials (e.g., sandstone, asphalt, concrete, explosive materials), soft biological tissues (e.g., ocular lens tissue, lung parenchyma, vertebral disk), and thin deformable porous materials and membranes, for instance. Scales of interest range from the microstructural and ultrastructural to the continuum. He is currently Principal Investigator (PI) for an NNSA Advanced Simulation and Computing (ASC) Predictive Science Academic Alliance Program (PSAAP) project, “Center for Micromorphic Multiphysics Porous and Particulate Materials Simulations within Exascale Computing Workflows.”

HEMI AI-M Seminar: Junjie Yang, JHU

Acoustic signature and reconstruction of defect avalanches in metals

Acoustic emission (AE) is a physical phenomenon where transient elastic stress waves propagate from a source(s) in a solid material due to an external stimulus (e.g. load). The sources are local regions of irreversible change within the material volume and can be associated with dislocation motion, phase transformations, twinning, crack initiation, and/or crack growth, among others. When these stress waves reach the surface, they can be characterized by a surface displacement, and are commonly detected as a change in the electrical signal output. AE detection is thus a useful tool for non-destructive evaluation (NDE) of materials in structural applications. However, it is challenging to quantify the interplay between different plasticity mechanisms with AE due to the inability to decode the measured acoustic waves into separate signatures of overlapping active mechanisms. In this talk, we will focus on AE signals induced by dislocation activities. The first part will involve the numerical simulations of AE signals by incorporating elasto-dynamic displacements calculations into our in-house Discrete Dislocation Dynamics (DDD) simulations. In the second part, we will discuss our attempts to parse the mechanisms, position and time information out of the AE signals from simulations using machine learning techniques (e.g. Physic Informed Neural Networks).

Junjie Yang is a 2nd year PhD student working with Prof. Jaafar El-Awady and Prof. Tamer Zaki in the Department of Mechanical Engineering at the Johns Hopkins University. His research focuses on dislocation plasticity of metals and alloys using computational methods.